首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7823篇
  免费   1303篇
  国内免费   775篇
电工技术   329篇
综合类   754篇
化学工业   216篇
金属工艺   369篇
机械仪表   1279篇
建筑科学   187篇
矿业工程   75篇
能源动力   16篇
轻工业   459篇
水利工程   22篇
石油天然气   32篇
武器工业   93篇
无线电   1110篇
一般工业技术   663篇
冶金工业   219篇
原子能技术   10篇
自动化技术   4068篇
  2024年   37篇
  2023年   245篇
  2022年   399篇
  2021年   413篇
  2020年   374篇
  2019年   261篇
  2018年   237篇
  2017年   292篇
  2016年   311篇
  2015年   388篇
  2014年   515篇
  2013年   488篇
  2012年   545篇
  2011年   542篇
  2010年   491篇
  2009年   452篇
  2008年   495篇
  2007年   540篇
  2006年   454篇
  2005年   386篇
  2004年   319篇
  2003年   260篇
  2002年   226篇
  2001年   211篇
  2000年   166篇
  1999年   132篇
  1998年   123篇
  1997年   112篇
  1996年   64篇
  1995年   69篇
  1994年   58篇
  1993年   49篇
  1992年   46篇
  1991年   33篇
  1990年   30篇
  1989年   27篇
  1988年   25篇
  1987年   8篇
  1985年   20篇
  1984年   11篇
  1983年   14篇
  1979年   2篇
  1975年   4篇
  1974年   2篇
  1964年   3篇
  1963年   2篇
  1961年   2篇
  1960年   2篇
  1956年   2篇
  1955年   2篇
排序方式: 共有9901条查询结果,搜索用时 17 毫秒
81.
针对现有转辙机缺口检测方法所存在的问题,本文介绍了一种基于机器视觉技术的转辙机缺口检测基本方法及其原理和步骤。文章详细论述了LSD算法的工作原理,同时本文作者对该算法做出了改进。最后将改进的LSD算法应用在转辙机缺口检测当中,结果表明该检测算法具有良好的稳定性和快速性,并且能够很好的解决转辙机缺口检测的问题。  相似文献   
82.
Most existing vision-language pre-training methods focus on understanding tasks and use BERT-like loss functions (masked language modeling and image-text matching) during pre-training. Despite their good performance in the understanding of downstream tasks, such as visual question answering, image-text retrieval, and visual entailment, these methods cannot generate information. To tackle this problem, this study proposes Unified multimodal pre-training for Vision-Language understanding and generation (UniVL). The proposed UniVL is capable of handling both understanding tasks and generation tasks. It expands existing pre-training paradigms and uses random masks and causal masks simultaneously, where causal masks are triangular masks that mask future tokens, and such pre-trained models can have autoregressive generation abilities. Moreover, several vision-language understanding tasks are turned into text generation tasks according to specifications, and the prompt-based method is employed for fine-tuning of different downstream tasks. The experiments show that there is a trade-off between understanding tasks and generation tasks when the same model is used, and a feasible way to improve both tasks is to use more data. The proposed UniVL framework attains comparable performance to recent vision-language pre-training methods in both understanding tasks and generation tasks. Moreover, the prompt-based generation method is more effective and even outperforms discriminative methods in few-shot scenarios.  相似文献   
83.
为实现遭受重大火灾等灾害后,对伤员皮肤烧伤自动化分级,加快诊断效率,提出提出一种用于皮肤烧伤分类的轻量化模型BI-YOLOv5算法。替换Swish激活函数,提高模型收敛能力及检测效率;使用K-means++算法对anchors聚类分析,增强对不同尺度目标的适应能力;修改特征提取网络,提取多个尺度的特征信息,建立多尺度特征融合网络,提高模型对深层特征信息的利用率,提高小面积烧伤的识别精度。实验结果表明,BI-YOLOv5算法在检测并区分不同烧伤类别及环境干扰下烧伤检测有较高的精度和效率,mAP达到97.6,对比YOLOv5提升8.4个百分点。  相似文献   
84.
85.
Identifying the presence of anti-nuclear antibody (ANA) in human epithelial type 2 (HEp-2) cells via the indirect immunofluorescence (IIF) protocol is commonly used to diagnose various connective tissue diseases in clinical pathology tests. As it is a labour and time intensive diagnostic process, several computer aided diagnostic (CAD) systems have been proposed. However, the existing CAD systems suffer from numerous shortcomings due to the selection of features, which is commonly based on expert experience. Such a choice of features may not work well when the CAD systems are retasked to another dataset. To address this, in our previous work, we proposed a novel approach that learns a set of filters from HEp-2 cell images. It is inspired by the receptive fields in the mammalian's vision system, since the receptive fields can be thought as a set of filters for similar shapes. We obtain robust filters for HEp-2 cell classification by employing the independent component analysis (ICA) framework. Although, this approach may be held back due to one particular problem; ICA learning requires a sufficiently large volume of training data which is not always available. In this paper, we demonstrate a biologically inspired solution to address this issue via the use of spontaneous activity patterns (SAP). The spontaneous activity patterns, which are related to the spontaneous neural activities initialised by the chemical release in the brain, are found as the typical stimuli for the visual cell development of newborn animals. In the classification system for HEp-2 cells, we propose to model SAP as a set of small image patches containing randomly positioned Gaussian spots. The SAP image patches are generated and mixed with the training images in order to learn filters via the ICA framework. The obtained filters are adopted to extract the set of responses from a HEp-2 cell image. We then employ regions from this set of responses and stack them into “cubic regions”, and apply a classification based on the correlation information of the features. We show that applying the additional SAP leads to a better classification performance on HEp-2 cell images compared to using only the existing patterns for training ICA filters. The improvement on classification is particularly significant when there are not enough specimen images available in the training set, as SAP adds more variations to the existing data that makes the learned ICA model more robust. We show that the proposed approach consistently outperforms three recently proposed CAD systems on two publicly available datasets: ICPR HEp-2 contest and SNPHEp-2.  相似文献   
86.
Visual tracking techniques based on stereo endoscope are developed to measure tissue motion in robot-assisted minimally invasive surgery. However, accurate 3D tracking of tissue surfaces remains challenging due to complicated deformation, poor imaging conditions, specular reflections and other dynamic effects during surgery. This study employs a robust and efficient 3D tracking scheme with two independent recursive processes, namely kernel-based inter-frame motion estimation and model-based intra-frame 3D matching. In the first process, target region is represented in joint spatial-color space for robust estimation. By defining a probabilistic similarity measure, a mean-shift-based iterative algorithm is derived for location of the target region in a new image. In the second process, the thin-plate spline model is used to fit the 3D shape of tissue surfaces around the target region. An iterative algorithm based on an efficient second-order minimization technique is derived to compute optimal model parameters. The two processes can be computed in parallel. Their outputs are combined to recover 3D information about the target region. The performance of the proposed method is validated using phantom heart videos and in vivo videos acquired by the daVinci®daVinci® surgical robotic platform and a synthesized data set with known ground truth.  相似文献   
87.
This paper presents a gravity optimised particle filter (GOPF) where the magnitude of the gravitational force for every particle is proportional to its weight. GOPF attracts nearby particles and replicates new particles as if moving the particles towards the peak of the likelihood distribution, improving the sampling efficiency. GOPF is incorporated into a technique for hand features tracking. A fast approach to hand features detection and labelling using convexity defects is also presented. Experimental results show that GOPF outperforms the standard particle filter and its variants, as well as state-of-the-art CamShift guided particle filter using a significantly reduced number of particles.  相似文献   
88.
Mappings between color spaces are ubiquitous in image processing problems such as gamut mapping, decolorization, and image optimization for color‐blind people. Simple color transformations often result in information loss and ambiguities, and one wishes to find an image‐specific transformation that would preserve as much as possible the structure of the original image in the target color space. In this paper, we propose Laplacian colormaps, a generic framework for structure‐preserving color transformations between images. We use the image Laplacian to capture the structural information, and show that if the color transformation between two images preserves the structure, the respective Laplacians have similar eigenvectors, or in other words, are approximately jointly diagonalizable. Employing the relation between joint diagonalizability and commutativity of matrices, we use Laplacians commutativity as a criterion of color mapping quality and minimize it w.r.t. the parameters of a color transformation to achieve optimal structure preservation. We show numerous applications of our approach, including color‐to‐gray conversion, gamut mapping, multispectral image fusion, and image optimization for color deficient viewers.  相似文献   
89.
Synthetic vision systems (SVS) render terrain features for pilots through cockpit displays using a GPS database and three‐dimensional graphical models. Enhanced vision systems (EVS) present infrared imagery of terrain using a forward‐looking sensor in the nose of an aircraft. The ultimate goal of SVS and EVS technologies is to support pilots in achieving safety under low‐visibility and night conditions comparable to clear, day conditions. This study assessed pilot performance and situation awareness (SA) effects of SVS and EVS imagery in an advanced head‐up display (HUD) during a simulated landing approach under instrument meteorological conditions. Videos of the landing with various HUD configurations were presented to eight pilots with a superimposed tracking task. The independent variables included four HUD feature configurations (baseline [no terrain imagery], SVS, EVS, and a combination of SVS and EVS), two visibility conditions, and four legs of the flight. Results indicated that SVS increased overall SA but degraded flight path control performance because of visual confusion with other display features. EVS increased flight path control accuracy but decreased system (aircraft) awareness because of visual distractions. The combination of SVS and EVS generated offsetting effects. Display configurations did not affect pilot spatial awareness. Flight performance was not different among phases of the approach, but levels and types of pilot SA did vary from leg to leg. These results are applicable to development of adaptive HUD features to support pilot performance. They support the use of multidimensional measures of SA for insight on pilot information processing with advanced aviation displays. © 2012 Wiley Periodicals, Inc.  相似文献   
90.
The accuracy of stereo vision has been considerably improved in the last decade, but real-time stereo matching is still a challenge for embedded systems where the limited resources do not permit fast operation of sophisticated approaches. This work presents an evaluation of area-based algorithms used for calculating distance in stereoscopic vision systems, their hardware architectures for implementation on FPGA and the cost of their accuracies in terms of FPGA hardware resources. The results show the trade-off between the quality of such maps and the hardware resources which each solution demands, so they serve as a guide for implementing stereo correspondence algorithms in real-time processing systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号